Supporting Doctors, Not Replacing Them

4min
Philipp Grätzel von Grätz
Published on January 2, 2019
<p>Everyone has something to say about artificial intelligence and yet everyone has their own idea about what it means. The future of the healthcare sector does not belong to “Dr Algorithm”, but to self-learning, intelligent decision-support systems that help doctors, holistically factor in the patient, and enhance the quality of medical care.</p><p>Photos: Sebastian Gabriel</p><p>Artificial intelligence, or AI, is no longer exclusively a topic for computer nerds. Newspapers and magazines devote in-depth reports to the issue, often with reference to medicine. Many consider “Dr Algorithm” to be the future of healthcare. But is that really the case? Will we be generating algorithms instead of training medical students?</p>
<p>During the German Federal Government's Digital Summit, at the Siemens Healthineers symposium, “Quantum Leap or Hype: AI in Medicine &amp; Medical Care”, Chris Boos, CEO of Arago and a member of the government's Digital Council, dispelled some common misconceptions: “Machines do not understand anything. They have nothing to do with brains. Artificial intelligence is more than just machine learning. And it won't put everyone out of a job.”</p>
Chris Boos is an expert in artificial intelligence.
<p>Essentially, it is about using AI to make currently inflexible software programs more flexible. That sounds dry, but it actually has disruptive potential: “About 80 percent of everything can be automated using AI,” said Boos. Basically there is a need to distinguish between “narrow AI” and “general AI”. The former refers to applications that train (self-learning) algorithms to carry out very specific tasks that the algorithm then fully masters. The more ambitious “general AI”, on the other hand, trains algorithms to solve a range of problems, thereby lowering the overall amount of training required.</p>
<p>Volkmar Weckesser, MD, CIO of CentoGene, illustrated the healthcare areas destined for AI solutions using the example of patients with suspected rare diseases. The company from Rostock in Germany has developed a medical care and research workflow that extends from laboratory analysis to clinical management of patients by the treating physician. AI algorithms support doctors in collating clinical data. They are used to identify new biomarkers and will correlate biomarkers with quality of life data in a patient app in the future. “I'm certain that as a result we will make significant progress in identifying rare diseases, and will also be able to help with finding new treatments,” Weckesser said.</p>
AI and AI-based clinical decision support are advancing in various clinical fields.
<p>The fact that innovative companies today can make extensive use of AI, not least in the healthcare sector, is thanks to the advances in machine learning made possible by greater processing power, better graphics, and more extensive training data sets, stressed Professor Dr.-Ing. Joachim Hornegger, President of the University of Erlangen-Nuremberg and previously Chair of Pattern Recognition there: “Thanks to deep learning the error rates in image analysis have fallen dramatically since around 2012. Since 2015, AI methods surpassed humans in some areas.”</p>
Artificial intelligence has advances thanks to greater processing power, better graphics, and more extensive training data sets.
<p>In image-based medicine, deep learning is facilitating medical assistance systems that until recently would have been unimaginable. Hornegger gave as an example digital subtraction angiography (DSA) software, a widely used method of imaging blood vessels using a contrast medium. However, until now DSA procedures could not be easily used on the coronary arteries because the blood vessels constantly move as the heart pumps. “Deep learning allows us to train the software to recognize the vascular tree so that we can use a DSA technique on the heart that requires only one image.” Hornegger sees other promising applications for deep learning in the detection of anatomical landmarks in CT data sets, as well as in improving image quality in 3D reconstructions.</p>
<p>“AI can help us improve precision and individual care. It helps enhance quality and eliminate errors, especially at a time when medical staff are facing an ever-increasing workload,” said Thomas Friese, PhD, Senior Vice President Data Architecture and Technology Platforms at Siemens Healthineers. “We are entering an era where there is more room for autonomy. It is no longer simply about detection but increasingly also about evaluation.”</p>
Artificial intelligence in healthcare is no longer simply about detection but increasingly also about evaluation.
<p>An example of a simple but very useful AI application that already has product status at Siemens Healthineers is the automatic positioning of patients undergoing CT scans with the help of a camera mounted above the CT table. “This allows us to reduce the error rate and improve the dose rate,” said Friese. In other words, less radiation is required, or the image quality is improved while the dose stays the same.</p>
<p>At the annual meeting of the Radiological Society of North America (RSNA) in November, Siemens Healthineers unveiled the AI-Rad Companion, an AI platform that uses extensive automation to support radiologists with diagnostics – for example with the AI-Rad Companion Chest CT1 , a thoracic CT assistant.&nbsp;</p>
The AI-Rad Companion uses artificial intelligence and extensive automation to support radiologists with diagnostics
<p>Using CT images of the chest, the software can differentiate between various structures in that region of the body, highlight them individually, and mark and measure potential abnormalities. AI-Rad Companion Chest CT is designed to help radiologists interpret images via automation for potentially reduced time spent on results documentation. The plan is to rapidly develop the AI-Rad Companion as an AI platform for radiology, said Christiane Bernhardt, Global Head of Sales and Marketing for CT at Siemens Healthineers: “We cannot afford to wait long. The next assistants are already in the pipeline.”</p>

Audio collection

Leadership in Times of Crisis with Zahi A Fayad, PhD | Christoph Zinde‪l‬‬‬‬‬

0:00

Successful Teams need a Psychological Sense of Safety with Prof. Dr. Ulrike Attenberger | Christoph Zindel

0:00
Event teaser
This is how the event teaser looks like
Logo Hauptstadtkongress

June 15, 2021

Hauptstadtkongress 2021

CityCube, Berlin, Deutschland

Ludwig-Erhard-Gipfel 2021

May 12, 2021

Ludwig-Erhard-Gipfel 2021

Online

Hauptstadtkongress 2021
June 15, 2021
CityCube, Berlin, Deutschland
Das Jahr 2021 ist für die Gesundheitspolitik von besonderer Bedeutung. Unter anderem werden die gravierenden Folgen der Pandemie längerfristig sichtbar. Welche Veränderungen und Anpassungen erfordert das Gesundheitssystem? Bernd Montag nimmt am 15. Juni von 12.30 bis 13.15 Uhr an einer CEO-Session zum Thema „Wie geht es nach COVID-19 weiter?“ teil.

Ludwig-Erhard-Gipfel 2021
May 12, 2021, 14:35 Uhr MEZ
Online
Eine Diskussion über das Thema „Wie wir ein neues Wirtschaftswunder schaffen. Nachhaltiger Aufschwung in Finanzindustrie, Wirtschaft und Gesellschaft“. Der TV-Sender ntv.de überträgt die Diskussion live ins Internet.

By Philipp Grätzel von Grätz

Philipp Grätzel von Grätz lebt und arbeitet als freiberuflicher Medizinjournalist in Berlin. Seine Spezialgebiete sind Digitalisierung, Technik und Herz-Kreislauf-Therapie.