Our response to the COVID-19 pandemic
CT imaging helps to evaluate COVID-19 patients and survey their progression

COVID-19 CT response
Our response to the COVID-19 pandemic
 
Contact Us

With CT imaging playing a key role in diagnosis, clinical decision-making, and patient management in the COVID-19 pandemic, we have created this central hub of information to

  • share knowledge and best practices about CT usage and safety in COVID-19 cases
  • explain how specific scanner technologies can support accurate diagnostic evaluation and clinical decision-making
  • provide an overview of the ongoing scientific debate about CT imaging for known and suspected COVID-19 patients

We hope you will find the information useful.

Clinical Outcomes

SARS-CoV-2: Tin Filter HR CT, 23-year-old female

SARS-CoV-2: Tin Filter HR CT, 23-year-old female

SOMATOM go.Up

Scan time: 9 sec
Scan length: 398 mm

Sn 130 kV

CTDIvol: 1.38 mGy
DLP: 51 mGy*cm

  • 1 mm slice thickness
  • Ground-glass opacities in both lung lobes

Courtesy of CHR Verviers, Belgium
SARS-CoV-2: Tin Filter HR CT, 57-year-old female

SARS-CoV-2: Tin Filter HR CT, 57-year-old female

SOMATOM go.Up

Scan time: 8 sec
Scan length: 361 mm

Sn 130 kV

CTDIvol: 1.68 mGy
DLP: 57 mGy*cm

  • 1 mm slice thickness
  • GGO with consolidations and reticular patterns

Courtesy of CHR Verviers, Belgium
SARS-CoV-2: Tin Filter HR CT, 55-year-old male with oxygen support

SARS-CoV-2: Tin Filter HR CT, 55-year-old male with oxygen support

SOMATOM go.Up

Scan time: 7 sec
Scan length: 339 mm

Sn 130 kV

CTDIvol: 1.04 mGy
DLP: 33 mGy*cm
  • 1 mm slice thickness

Courtesy of CHR Verviers, Belgium
SARS-CoV-2: Tin Filter HR CT, Female patient

SARS-CoV-2: Tin Filter HR CT, Female patient

SOMATOM go.Up

Scan time: 8 sec
Scan length: 375 mm

Sn 130 kV

Pitch: 1.5
Rotation time: 0.8 sec

CTDIvol: 0.95 mGy
DLP: 33 mGy*cm

  • 1 mm MPRs and VRTs
  • Br60 kernel
  • Different C/W windowing impacts visualization of GGO extent
     
Courtesy of CHR Verviers, Belgium
SARS-CoV-2: Non-CME thorax HR CT, 75-year-old male

SARS-CoV-2: Non-CME thorax HR CT, 75-year-old male

SOMATOM go.Up

Scan time: 7 sec
Scan length: 339 mm

130 kV

Pitch: 1.5
Rotation time: 0.8 sec

CTDIvol: 6.35 mGy
DLP: 231 mGy*cm
  • 1 mm MPRs
  • GGO with interlobar lines

Courtesy of CHR Verviers, Belgium
Lung imaging: 3D HR volume CT lung imaging

Lung imaging: 3D HR volume CT lung imaging

SOMATOM go.Top

Scan time: 3 s
Scan length: 390 mm

120 kV

CTDIvol: 8.38 mGy
DLP: 292 mGy cm

  • 1 mm MPRs shown
  • Diffuse lung disease present (non-inflammatory)
  • Clinical need for high image quality and short breath-holds

Courtesy of University Hospital Erlangen, Erlangen, Germany
Lung imaging: HR CT evaluation of infectious disease

Lung imaging: HR CT evaluation of infectious disease

SOMATOM X.cite

90 kV

CTDIvol: 5.9 mGy
DLP: 256 mGy cm

Rotation time: 0.3 s
  • 1 mm MPRs shown
  • Clinical example of a lobar infiltrate

Courtesy of University Hospital Erlangen, Erlangen, Germany
Lung imaging: Tin Filter HR CT with reducing radiation exposure

Lung imaging: Tin Filter HR CT with reduced radiation exposure

SOMATOM X.cite

Sn140 kV

CTDIvol: 1.63 mGy
DLP: 49 mGy cm
Rotation time: 0.3 s
  • 1 mm MPRs
  • Tin Filter topogram
  • Clinical need to reduce radiation dose especially for repetitive follow-ups

Courtesy of Clinica Universidad de Navarra, Pamplona, Spain

CT Usage and Safety

Container Solution

Scanners of the SOMATOM go. platform can be delivered fast to areas where COVID-19 is prevalent. These scanners can also be installed in temporary units to provide access in high-demand or in isolated areas.

Container solutions and other similar deployments with a SOMATOM go. scanner have already proven themselves in numerous other countries, including China, the United Kingdom, Germany, Austria, Poland, and Portugal, to build up the much-needed scanning capacities in the current situation.

Read here how Siemens Healthineers supports Free State of Bavaria in fight against Covid-19 with 12 container-based CT solutions.

 

 

Remote scanning assistance with syngo Virtual Cockpit

syngo Virtual Cockpit is designed to assist scan procedures from a distance. Enabled by syngo Expert-i, expert colleagues receive access to the scanner and can support less experienced technologists – for reproducible results across your entire CT system fleet.

Explore our best practices on COVID-19

CT scanner cleaning and disinfection at University Hospital Erlangen, Germany

Position the patient and maintain a safe distance

Pep connect

Discover more helpful information in PEPconnect, our education and performance experience for healthcare professionals.

Read more.

Relevant CT technologies for COVID-19 evaluation

Find out which CT technolgies can help to fight against COVID-19 whilst protecting your staff and allowing for reliable clinical decision making.

AI algorithms developed collaboratively to help with COVID-19

Artificial Intelligence applied to CT images can be a useful tool for the detection of COVID-19 symptoms and to help with follow-up and treatment planning. AI-powered analysis of chest scans has the potential to alleviate the workload of radiologists, who must review and prioritize a rising number of patient chest scans.

Our AI expert teams developed two new algorithms, among them the CT pneumonia analysis1 newly deployed on our research solutions and ready for trial.

Mobile Workflow supports healthcare staff safety

The Mobile Workflow of SOMATOM go. platform scanners permits technologists to maintain a distance of at least 1.5 m (5 ft) from potentially infected patients. Scan&GO is the installed application on a wireless mobile tablet allowing to:

  • Anticipate potential breathing artifacts
  • Control scans remotely and check images, right after the scan, on your tablet

 

Tin Filter for low-dose CT scans

In a recent study, a number COVID-19 pneumonia patients had between 3 and 6 scans in a short period of time. Radiation dose could therefore be a concern. Tin Filter technology is available in all our modern scanners offering radiation exposure control while monitoring the progress of symptoms in a patient.2

 

myExam Companion simplifies scanning by guiding users through the CT procedure

When scanning COVID-19 patients, myExam Companion individualizes dose and scan settings by identifying input from the patient and asking the technologists about the clinical indication. The answers are linked to predefined scan parameters and postprocessing tasks3:

  • Patients with suspected COVID-19 are typically scanned with the high-resolution technique and additional reconstructions: coronal and sagittal
  • Follow-up procedures can be scanned with Tin Filter in order to reduce the dose to a minimum level similar to that of a screening procedure
  • The acquisition speed can also be tailored to the breath-hold capabilities of the patient

FAST 3D Camera for automatic patient isocentering – even at a distance

The FAST 3D Camera takes visual and infrared data from the patient lying on the table of the CT scanner.4 The measured data are used to calculate the starting position of the scan as well as the best height to support accurate isocenter position. Positioning the patient in the isocenter is a precondition to enable the lowest possible dose and consistent image quality. The table can then be moved to the calculated position at a push of a button.

For COVID-19 patients in particular it is important that the radiographer can use touch panels on the gantry covers 1 or even wireless mobile tablets5 in order to operate the FAST 3D Camera and even the remote control2 to move the table to the scan position. This allows, the radiographer to position with accuracy and with a minimal need for close contact to an infected patient.

Turbo Flash mode for subsecond acquisition speeds for the thorax

In cases of severe respiratory symptoms, the Turbo Flash mode enables subsecond acquisition speeds for the thorax. In this acute care scenario, our ultrafast StellarInfinity detector technology delivers consistent image quality while minimizing breathing artifacts. This technology is available on Dual Source CT scanners (SOMATOM Force, SOMATOM Drive).

Pitch: 3
Scan time: 0.45 s
Scan length: 313.6 mm
Rotation time: 0.25 s
Sn100 kV
CTDIvol: 0.30 mGy
DLP: 11 mGy cm

Courtesy of University Medical Center Mannheim, Mannheim, Germany

CT Scanners for COVID-19 evaluation

CT Scanners for COVID-19 assessment

CT Scanners

Discover our Single and Dual Source CT scanners for use in COVID-19 assessment.
More information
CT Scanner for Radiation Therapy

CT Scanners for Radiation Therapy

Discover our CT simulators usually used for radiation treatment planning. They can be used to support the diagnosis of pneumonia resulting from COVID-19.
More information

Scientific Corner

By gathering externally published information from trusted sources, we aim to provide useful information for healthcare providers fighting the virus worldwide.

Please note, the information provided on the linked pages is the responsibility of the individual third party websites.

The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society
The Fleischner Society has updated their recommendations on the role of chest imaging in the management of COVID-19 patients.
The Fleischner Society. Radiology. April 2020.
Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review
Sharing knowledge and learning from peers – Imaging features of COVID-19 cases are shared in a pictorial review by radiologist from West China Hospital.
Ye Z et al. Eur Radiol. March 2020 (37).
Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study
COVID-19 imaging features are changing over time. What to expect?
Wang et al. Radiology. March 2020 (80).
Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases
Sharing the experience of diagnosing COVID-19 at an early stage of the pandemic.
Ai et al. Radiology. February 2020.

1) The CT pneumonia analysis algorithm has been developed for research. CT pneumonia analysis is not intended for clinical use. It’s future availability as a product cannot be guaranteed.

2) Kang Z, Li X, Zhou S., Recommendation of low-dose CT in the detection and management of COVID-2019., European Radiology, February 2020

3) The dedicated decision tree is not a factory default and it needs to be created once manually for this purpose.

4) Available on SOMATOM Force, SOMATOM Drive, SOMATOM Edge Plus, SOMATOM go.Top, SOMATOM go.All, SOMATOM go.Up (syngo CT VA30 software version)

5) Available on SOMATOM X.cite and SOMATOM go.Up, SOMATOM go.All, SOMATOM go.Top (syngo CT VA30 software version)

Disclaimer for videos: This video provides recommendations on how to clean a Siemens Healthineers SOMATOM CT scanner based on best practices from the University Hospital Erlangen and the Education Team from Siemens Healthineers. This video is not intended to be a replacement of your national guidelines or your Institution’s guidelines in terms of hygiene and disinfection. Parts of this movie have been filmed at the Imaging Science Institute (ISI), Erlangen, Germany.