Tin Filter
Like UV filtration, not all CT filtration is the same

Reducing radiation dose for your patients as much as possible while maintaining image quality is the ultimate goal.

Traditional CT filtration technologies are limited by the amount of dose reduction before image quality is impacted. Reimagining the X-ray pre-filtration process by adding another layer, led to the development of Tin Filtration, which works to overcome historic limits on dose reduction without sacrificing image quality.

Check out our video below and see how Tin Filtration is like selecting better quality sunglasses.

Filtering out unnecessary photons for powerful low-dose scanning

Achieve an optimized spectrum for dose efficiency with the Tin Filter by filtering out unnecessary photons. This delivers powerful low-dose scanning at the level of conventional X-ray examinations.

The Tin Filter cuts out lower energies to reduce dose and optimize image quality at the interface between soft tissue and air. This has direct benefits in lung and colon imaging, for example. Clinical experience also shows that Tin Filter technology reduces beam hardening artifacts and improves image quality in bony structures, making it also extremely useful in orthopedic examination.

  • Optimize scans for early detection and vulnerable patients
  • Provide high diagnostic confidence in lung scans1
  • Enhance sensitive scans, e.g., for sinuses2 and pediatrics
  • Improve spectral separation in Dual Energy scans3


Physics background

Illustration of 70 kVp and 120 kVp spectra without the use of a Tin Filter, and 100 kVp and 150 kVp spectra with spectral shaping by tin (Sn) filtration (Sn100 kV and Sn150 kV, respectively). The Tin Filter reduces radiation dose by blocking low-energy X-ray photons. (Figure 1)

Comparison of image noise at the same dose (CTDIvol) for various patient diameters. Starting from approximately 20 cm, spectra with tin filtration are more dose efficient than traditional spectra. (Figure 2)

Clinical Cases

Add significant benefits for your patients – from head to toe.


Full ReferenceTopicBody Part
High-pitch low-dose abdominopelvic CT with tin-filtration technique for detecting urinary stones
Zhang GM, Shi B, Sun H, Xue HD, Wang Y, Liang JX, et al.
Abdom Radiol, 2017 Aug;42(8):2127-34.
Lower dose whilst improving image qualityKidney stones
Low-dose abdominal computed tomography for detection of urinary stone disease – Impact of additional spectral shaping of the X-ray beam on image quality and dose parameters
Dewes P, Frellesen C, Scholtz JE, Fischer S, Vogl TJ, Bauer RW, et al.
Eur J Radiol. 2016 Jun;85(6):1058-62.  
Lower dose whilst improving image qualityKidney stones
Approaches to ultra-low radiation dose coronary artery calcium scoring based on 3rd generation dual-source CT: A phantom study
McQuiston AD, Muscogiuri G, Schoepf UJ, Meinel FG, Canstein C,
Varga-Szemes A.

Eur J Radiol. 2016 Jan;85(1):39-47.
Agatson equivalent CaScoringHeart/CaScoring

Ultra-low Dose and Ultra-fast Scan in a Patient with Dyspnea
Chen G, Sun K, Liu X, Zhao R, Zhao X.
SOMATOM Sessions, Dec 2015.

Low dose,
Fast speed
Ultra-low-dose CT with tin filtration for detection of solid and sub solid pulmonary nodules: a phantom study
Martini K, Higashigaito K, Barth BK, Baumueller S, Alkadhi H, Frauenfelder T.
Br J Radiol. 2015 Oct; 88(1056): 20150389.
Detection of sub-solid nodules is feasible with ultra-low-dose protocolsChest/Lung
Unenhanced third-generation dual-source chest CT using a tin filter for spectral shaping at 100 kVp
Haubenreisser H, Meyer M, Sudarski S, Allmendinger T, Schoenberg S, Henzler T.
Eur J Radiol. 2015 Aug;84(8):1608-13.
Lower dose whilst improving image qualityChest/Lung
Imaging the Parasinus Region with a Third-Generation Dual Source CT and the Effect of Tin Filtration on Image Quality and Dose
Lell MM, May MS, Brand M, Eller A, Bruder T, Hofmann E, et al.
AJNR Am J Neuroradiol. 2015 Jul,36(7):1225-30.
Low dose,
Use CT instead of cone beam 
The Importance of Spectral Separation. An Assessment of Dual-Energy Spectral Separation for Quantitative Ability and Dose Efficiency
Krauss B, Grant KL, Schmidt BT, Flohr TG.
Invest Radiol 2015 Feb;50(2):114-8.
Dual Energy spectral seperationAll
Very Low-Dose (0.15 mGy) Chest CT Protocols Using the COPDGene 2 Test Object and a Third-Generation Dual-Source CT Scanner With Corresponding Third-Generation Iterative Reconstruction Software
Newell JD Jr, Fuld M, Allmendinger T, Sieren JP, Chan KS, Guo J, et al.
Invest Radiol, 2015 Jan;50(1):40-5.
Very low dose levels (0.15 mGy)Chest/Lung
Ultra-low-Dose Chest Computed Tomography for Pulmonary Nodule Detection. First Performance Evaluation of Single Energy Scanning With Spectral Shaping
Gordic S, Morsbach F, Schmidt B, Allmendinger T, Flohr T,
Husarik D, et al.
Invest Radiol. 2014 Jul;49(7): 465-73.
Lower dose whilst improving image quality Chest/Lung 
Dual-Source Dual-Energy CT With Additional Tin Filtration: Dose and Image Quality Evaluation in Phantoms and In Vivo
Primak AN, Ramirez Giraldo JC, Eusemann CD, Schmidt B, Kantor B, Fletcher JG
AJR Am J Roentgenol. 2010 Nov;195(5): 1164-74.
Dual Energy spectral seperationAll

Dual Energy CT of the Chest
How About the Dose?
Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U,
Nikolaou K.

Invest Radiol. 2010 Jun;45(6):347-53.

Dual EnergyAll


Fill out the form to receive your White Paper

Complete the form below to receive a copy of the "Shaping the Beam" white paper.

Because of some maintenance activities, this service is not available currently.
Please try again later.

An issue occurred on this form. Either, one or more missing and/or incorrect entries are in the form. Each is underlined in red. Or, the data inserted by you seems to be invalid. Please check if you filled in all form fields as expected according to the field names (e.g. ‘First Name’, ‘Last Name’ etc.). Please correct and re-submit your request again. Thank you!

An issue occurred on this form. The data inserted by you seems to be invalid. Please check if you filled in all form fields as expected according to the field names (e.g. ‘First Name’, ‘Last Name’ etc.). Please correct and re-submit your request again. Thank you!

* Required

Thank you for your interest in Siemens Healthineers. Click here to access the Shaping the Beam whitepaper 1.1 MB

If you requested that someone contact you, please anticipate a response in 3-5 business days.

To keep up to date with Siemens Healthineers news and events specific to your interest area, sign up for Siemens Healthineers eNews and choose your individualized preferences.  

Due to technical reasons your request cannot be completed. Please try again or contact us. We apologize for the inconvenience caused.


1Gordic S, et al. Utralow-Dose Chest Computed Tomography for Pulmonary Nodule Detection. Invest Radiol. 2014 Jul; 49(7):465–73.

2Lell MM, et al. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose. AJNR Am J Neuroradiol. 2015 Jul; 36(7):1225–30.

3Hardie AD, et al. Application of an Advanced Image-Based Virtual Monoenergetic Reconstruction of Dual Source Dual-Energy CT Data at Low keV Increases Image Quality for Routine Pancreas Imaging. J Comput Assist Tomogr. 2015 Sep-Oct; 39(5):716–20. For international use only. Do not distribute in the U.S.