Photon-counting detectors, by contrast, can directly transform X‐ray photons into electrical signals.
In a direct conversion process, the absorbed X‐rays create electron‐hole pairs in the semiconductor. The charges are separated in a strong electric field between cathode on top and pixelated anode electrodes at the bottom of the detector.
Compared to solid‐state scintillation detectors, photon-counting detectors have several advantages. The individual detector cells are defined by the strong electric field between common cathode and pixelated anodes (Fig. 2), and there is no need for additional septa between the detector pixels to avoid optical cross talk inherent to scintillation detectors. The geometrical dose efficiency is, therefore, better than that of scintillation detectors and only reduced by the anti‐scatter collimator blades or grids that are also present in scintillation detectors. Furthermore, each “macro” detector pixel confined by collimator blades may be divided into smaller detector sub‐pixels which are read‐out separately to significantly increase spatial resolution.
With a photon-counting detector being able to count the charges created by individual x‐Ray photons as well as measuring their energy level, we now have a detector that has intrinsic spectral sensitivity in every scan.